近日,Plant Biotechnology Journal杂志在线发表了由山东农业大学姚玉新课题组撰写的“Ethylene increases the NaHCO3 stress tolerance of grapevines partially via the VvERF1B-VvMYC2-VvPMA10 pathway”论文。该研究工作评价了乙烯在调控葡萄NaHCO3胁迫中的作用,并阐明了VvERF1B调控NaHCO3胁迫的分子途径。VvERF1B过量表达能显著提高VvPMA10转录水平和PMA活性,增强葡萄NaHCO3胁迫耐受能力。VvERF1B不能直接转录激活VvPMA10,而是通过VvMYC2间接调控。VvERF1B与VvMYC2蛋白互作,互作增强了VvMYC2激活VvPMA10表达的能力。该团队首次揭示了以“VvERF1B-VvMYC2-VvPMA10”为核心的抗碱性盐途径。这一发现不仅提供了葡萄抗碱性盐的新途径,而且对葡萄抗碱性盐种质的创制和改良具有重要实用价值。
该团队前期研究结果表明,NaHCO3胁迫显著诱导葡萄根中VvACS3的转录和乙烯释放。为了阐明乙烯在调控葡萄NaHCO3抗性上的作用,研究者使用ACC(乙烯合成前体物质)和1-MCP(乙烯信号传导抑制剂)处理葡萄扦插苗。结果表明,ACC有效缓解了NaHCO3处理对叶片的伤害,而1-MCP加剧了叶片伤害。在NaHCO3和NaHCO3+ACC处理中,根系PMA活性显著高于对照组根系(图1a)。此外,NaHCO3+ACC处理48h,培养基出现大面积黄色区域,而在NaHCO3处理中没未观察到(图1b),表明施用ACC促进H+分泌。NaHCO3+ACC处理的根系分泌物中草酸含量显著高于NaHCO3处理(图1c)。另外,在NaHCO3处理下,过表达VvACS3显著提高葡萄根系中的PMA活性,促进H+和草酸分泌(图1d-f)。综上所述,乙烯增加了PMA活性,促进NaHCO3胁迫下的H+和草酸盐分泌。
图1 NaHCO3胁迫下葡萄根系及愈伤组织中PMA活性、H+及草酸含量变化
VvERF1B的表达不仅受NaHCO3胁迫诱导,也受乙烯诱导(图2a-c)。为揭示VvERF1B在调控NaHCO3抗性过程的功能,研究者获得了VvERF1B过量表达的葡萄株系。100 mM NaHCO3处理5天后,野生型株系叶片表现失绿表型,转基因株系受伤害较轻(图2d)。VvERF1B过表达降低MDA含量,提高H+-ATPase活性,促进H+外流和草酸的分泌(图2e-h)。为进一步阐明VvERF1B的功能,研究者获得了VvERF1B过表达和突变的转基因葡萄愈伤组织。在NaHCO3胁迫下,与野生型愈伤组织相比,过表达愈伤组织的生长受到的抑制程度较小,但突变愈伤生长受到严重抑制(图2i)。PMA活性、H+和草酸分泌存在相似的变化趋势(图2i-m)。以上结果表明,过表达VvERF1B提高了H+-ATP酶活性,促进H+外排,诱导草酸分泌,进而增强了葡萄对NaHCO3胁迫耐受能力。
图2. VvERF1B在提高NaHCO3胁迫抗性中的作用
VvERF1B过表达葡萄根系中,VvPMA10转录水平显著上调(图3a)。并且,在葡萄愈伤组织中,VvERF1B过表达上调了VvPMA10转录,而VvERF1B突变则降低了其表达(图3b)。因此,VvPMA10可能是VvERF1B的靶基因。尽管VvPMA10启动子存在2个ERE原件,EMSA和Y1H实验表明,VvERF1B不能直接结合VvPMA10启动子ERE元件。
获得了7条VvPMA10过表达根系,选取表达水平较高的两条根系(OE2和OE5)用于进一步研究(图3c)。与野生型根系相比,在NaHCO3胁迫下转基因根系受到的损伤更小,MDA含量更低(图3d,3e)。VvPMA10过表达显著提高了根系PMA活性、H+外流速率及草酸分泌水平(图3f-h)。VvPMA10过表达能增强葡萄愈伤组织NaHCO3胁迫抗性(图3i,3j),表现为提高的生长量、PMA活性、草酸和H+分泌水平(图3 k-o);而VvPMA10突变产生了相反的结果(图3m-o)。以上结果表明,VvERF1B并不能直接结合VvPMA10启动子,VvPMA10正调控葡萄根系及愈伤组织的碱性盐抗性。
图3 VvPMA10在增加葡萄根系和愈伤组织NaHCO3胁迫抗性性中的作用。
为了阐明VvERF1B调控VvPMA10表达的分子途径,研究者利用Y1H筛选VvPMA10的上游转录因子,并获得了候选转录因子VvMYC2(VIT_215s0048g02820)。VvPMA10启动子上存在多个MYC2结合元件(2个G-box、4个E-box和4个MYC);Y1H试验表明,VvMYC2结合到G-box(CACGTG)元件上(图4a),EMSA和荧光素酶(LUC)试验也验证了这一结果(图4b,c)。
VvMYC2的表达受NaHCO3胁迫诱导(图4d)。为了鉴定VvMYC2调控NaHCO3胁迫的功能,获得了VvMYC2过量表达和突变的转基因愈伤组织(图4e)。与WT愈伤组织相比,VvMYC2过表达显著提高了愈伤组织的生长量,VvMYC2突变明显抑制了愈伤组织抗性。VvMYC2过表达显著上调了VvPMA10表达,增强PMA活性,促进草酸和H+分泌,而VvMYC2突变则导致相反的结果。以上结果表明,VvMYC2通过转录激活VvPMA10提高葡萄NaHCO3抗性。
图4 VvMYC2转录激活VvPMA10表达及其抗盐功能鉴定
研究者发现,VvERF1B和VvMYC2不存在转录调控关系,但二者蛋白互作(图5a)。为了评价VvERF1B-VvMYC2蛋白复合体的功能,研究者获得了VvERF1B和VvMYC2共同过表达,VvERF1B过表达且VvMYC2突变的葡萄愈伤组织。
基于表型分析发现,与WT愈伤组织相比,VvERF1B或VvMYC2过表达提高了NaHCO3胁迫抗性(图5b-d)。与VvERF1B或VvMYC2单独过表达相比,二者同时过表达提高了葡萄愈伤组织对NaHCO3胁迫的耐受能力;在VvERF1B过表达的愈伤组织中突变VvMYC2,降低了VvERF1B诱导的NaHCO3抗性(图5b-d)。此外,同时过表达VvERF1B和VvMYC2显著增加了VvPMA10表达、PMA活性、草酸盐和H+分泌(图5b-e)。因此,VvERF1B通过促进VvMYC2介导的途径增强了NaHCO3抗性。
图5 VvERF1B-VvMYC2复合物对VvPMA10表达和NaHCO3抗性的影响
https://onlinelibrary.wiley.com/doi/full/10.1111/pbi.14565
References:
l Chen, J., Li, X., Ye, X., Guo, P., Hu, Z., Qi, G., Cui, F., et al. (2021) An S-ribonuclease binding protein EBS1 and brassinolide signaling are specifically required for Arabidopsis tolerance to bicarbonate. J. Exp. Bot. 72, 1449-1459.
l Crombez, H., Motte, H. and Beeckman, T. (2019) Tackling Plant Phosphate Starvation by the Roots. Dev. Cell 48, 599–615.
l Jia, X., Zhu, Y., Hu, Y., Zhang, R., Cheng, L., Zhu, Z., Zhao, T. et al. (2019) Integrated physiologic, proteomic, and metabolomic analyses of Malus halliana adaptation to saline–alkali stress. Hortic. Res. 6, 91.
l Lian, T., Xu, Y., Li, L. and Su, X. (2017) Crystal structure of tetrameric Arabidopsis MYC2 reveals the mechanism of enhanced interaction with DNA. Cell Rep. 19, 1334–1342.
l Luo, L., Wang, Y., Qiu, L., Han, X., Zhu, Y., Liu, L., Man, M. et al. (2023) MYC2: a master switch for plant physiological processes and specialized metabolite synthesis. Int. J. Mol. Sci. 24, 3511.
l Michalak, A., Wdowikowska, A. and Janicka, M. (2022) Plant plasma membrane proton pump: one protein with multiple functions. Cells 11,4052.
l Song, S., Huang, H., Gao, H., Wang, J., Wu, D., Liu, X., Yang, S. et al. (2014) Interaction between MYC2 and Ethylene Insensitive3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis. Plant Cell 26, 263-279.
l Wang, Y., Jiang, H., Mao, Z., Liu, W., Jiang, S., Xu, H., Su, M., et al. (2021) Ethylene increases the cold tolerance of apple via the MdERF1B–MdCIbHLH1 regulatory module. Plant J. 106, 379-393.
l Wang, Y., Zhao, C., Wang, X., Shen, H. and Yang, L. (2023) Exogenous ethylene alleviates the inhibition of sorbus pohuashanensis embryo germination in a saline-alkali environment (NaHCO3). Int. J. Mol. Sci. 24, 4244.
l Wu, Y., Li, X., Zhang, J., Zhao, H., Tan, S., Xu, W., Pan, J., et al. (2022) ERF subfamily transcription factors and their function in plant responses to abiotic stresses. Front. Plant Sci. 13.
l Xiang, G., Ma, W., Gao, S., Jin, Z., Yue, Q. and Yao, Y. (2019) Transcriptomic and phosphoproteomic profiling and metabolite analyses reveal the mechanism of NaHCO3-induced organic acid secretion in grapevine roots. BMC Plant Biol. 19, 383.
l Xu, L., Xiang, G., Sun, Q., Ni, Y., Jin, Z., Gao, S. and Yao, Y. (2019) Melatonin enhances salt tolerance by promoting MYB108A-mediated ethylene biosynthesis in grapevines. Hortic. Res. 6.
l Xu, W., Jia, L., Shi, W., Balu¡ka, F.e., Kronzucker, H.J., Liang, J. and Zhang, J. (2013) The Tomato 14-3-3 protein TFT4 modulates H+ efflux, basipetal auxin transport, and the PKS5-J3 pathway in the root growth response to alkaline stress. Plant Physiol. 163, 1817-1828.
l Yang, G.H. (2012) Alkali stress induced the accumulation and secretion of organic acids in wheat. Afr. J. Agric. Res. 7, 2844–2852.
l Yang, Y., Wu, Y., Ma, L., Yang, Z., Dong, Q., Li, Q., Ni, X. et al. (2019a) The Ca2+ sensor SCaBP3/CBL7 modulates plasma membrane H+-ATPase activity and promotes alkali tolerance in Arabidopsis. Plant Cell 31, 1367–1384.
l Yu, Y., Duan, X., Ding, X., Chen, C., Zhu, D., Yin, K., Cao, L., et al. (2017) A novel AP2/ERF family transcription factor from Glycine soja, GsERF71, is a DNA binding protein that positively regulates alkaline stress tolerance in Arabidopsis. Plant Mol. Biol. 94, 509-530.
l Yuan, W., Zhang, D., Song, T., Xu, F., Lin, S., Xu, W., Li, Q. et al. (2017) Arabidopsis plasma membrane H+-ATPase genes AHA2 and AHA7 have distinct and overlapping roles in the modulation of root tip H+ efflux in response to low-phosphorus stress. J. Exp. Bot. 68, 1731–1741.
l Zhang, H., Yu, F., Xie, P., Sun, S., Qiao, X., Tang, S., Chen, C., et al. (2023a) A Gγ protein regulates alkaline sensitivity in crops. Science 379.
图文来源:植物生物技术Pbj