1) 种质资源评估时期:主要是依赖分子标记来评估遗传多样性,筛选核心种质,增加种质资源开发的利用价值,提高效率;
2)基因定位时期:在种质资源评估时期获得一些遗传差异大,性状变异大的材料来构建资源群体和作图群体,通过GWAS或遗传作图方法来定位基因座;
3)基因组测序时期:控制性状基因座的定位只是得到一个标记区间,要想知道控制该性状的基因或者调控元件,需要进一步测序基因组,确定是哪个基因或者哪个调控元件发生变异导致性状变异;
4)基因功能机制研究时期:在确定了功能基因或者功能元件后,需要进一步确定该基因或调控元件是如何影响到最终的性状;
5)功能基因应用时期:确定了导致性状差异的遗传变异后,可以开发成诊断标记或者育种芯片应用于医学诊断和遗传育种。
通过SSR或RAD技术获得分型数据后,再对种质资源进行遗传多样性评估,对个体间的亲缘关系进行比较,获得个体间的遗传距离矩阵,进而构建进化树。再根据一定的阈值筛选有代表性的个体作为核心种质资源[4]。
1)对作图群体所有个体进行基因组分析和性状统计[5];
2)利用BSA方法,将某一性状的极端个体混合,再找关联的分子标记,但条件是该物种已有参考基因组[6];性状可以是传统的农艺性状(株高、产量、开花期、含油量、千粒重等),也可以是分子表型(基因RNA表达量[7]、代谢产物[8]、区域可及性[9]等)。
物种形成的过程也伴随着物种分化的过程,在不断经历着基因组加倍和二倍化的过程,通过比较基因组的分析,可以揭示基因组进化的痕迹,探索物种的性状形成的遗传基础。通过同一物种不同品种的基因组分析,可以挖掘出物种的核心基因和品种特有基因,为性状控制基因挖掘提供基础。
References:
1. Zhou X, Dong Y, Zhao J, Huang L, Ren X, Chen Y, et al. Genomic survey sequencing for development and validation of single-locus SSR markers in peanut (Arachis hypogaea L.). BMC genomics. 2016;17:1–14.
2. Dutta S, Kumawat G, Singh BP, Gupta DK, Singh S, Dogra V, et al. Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea [Cajanus cajan (L.) Millspaugh]. BMC plant biology. 2011;11:1–13.
3. Yang G-Q, Chen Y-M, Wang J-P, Guo C, Zhao L, Wang X-Y, et al. Development of a universal and simplified ddRAD library preparation approach for SNP discovery and genotyping in angiosperm plants. Plant methods. 2016;12:1–17.
4. Muzzalupo I, Vendramin GG, Chiappetta A. Genetic biodiversity of Italian olives (Olea europaea) germplasm analyzed by SSR markers. The Scientific World Journal. 2014;2014.
5. Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, et al. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theoretical and Applied Genetics. 2006;114:67–80.
6. Imerovski I, Dedić B, Cvejić S, Miladinović D, Jocić S, Owens GL, et al. BSA-seq mapping reveals major QTL for broomrape resistance in four sunflower lines. Molecular Breeding. 2019;39:1–15.
7. Majewski J, Pastinen T. The study of eQTL variations by RNA-seq: from SNPs to phenotypes. Trends in Genetics. 2011;27:72–9.
8. Vosman B, Kashaninia A, van’t Westende W, Meijer-Dekens F, van Eekelen H, Visser RGF, et al. QTL mapping of insect resistance components of Solanum galapagense. Theoretical and Applied Genetics. 2019;132:531–41.
9. Sun W, Poschmann J, Del Rosario RC-H, Parikshak NN, Hajan HS, Kumar V, et al. Histone acetylome-wide association study of autism spectrum disorder. Cell. 2016;167:1385–97.
10. Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature genetics. 2008;40:761–7.
11. Wang Q, Su Q, Nian J, Zhang J, Guo M, Dong G, et al. The Ghd7 transcription factor represses ARE1 expression to enhance nitrogen utilization and grain yield in rice. Molecular Plant. 2021.
12. Wang H, Jiao X, Kong X, Liu Y, Chen X, Fang R, et al. The histone deacetylase HDA703 interacts with OsBZR1 to regulate rice brassinosteroid signaling, growth and heading date through repression of Ghd7 expression. The Plant Journal. 2020;104:447–59.
13. Parvathaneni RK, Bertolini E, Shamimuzzaman M, Vera DL, Lung P-Y, Rice BR, et al. The regulatory landscape of early maize inflorescence development. Genome biology. 2020;21:1–33.